HDI Materials with Higher Tg

Dr. James Briguglio

HDI Materials with Higher Tg

Technology Drivers for New HDI
Material Properties and Processing
Conditions

Agenda

- Current Material Properties & Processing Conditions
- Currently Available Products
- Multek Technology Roadmap
- Industry Trends New Drivers
- Translated New Properties
- New Processing Conditions
- Proposed Formulation Plans
- Testing Criteria

Why Do We Need a Higher Tg Material?

- Lower Coefficient of Thermal Expansion
- Increased Robustness for Assembly and Rework Processes
- Higher Cure Temperatures for Non-Halogenated Laminates
- Higher Reflow Temperatures for Lead Free Finishes

Currently Available Products

- Resin Coated Coppers
- Dry Film
 - Photo-Imageable (DynaVia)
 - Laser Ablate (Vialux)
- Liquid
 - Photo-Imageable (Probelac 81)
 - Laser Ablate (Probelac 81)

Technology Roadmap: Multek - Irvine

	Products Products						
	1999	1999	1999+	2000	2001	2002	
Drilling Aspect Ratio - Drilled Hole Size	10:1	11.5:1	12:1	14:1	15:1	16:1	
2 Min. Drilled Hole Size (vias)	.010	.006	.004	.005	.004	.004	
Min. Finished Hole Size (vias)	.008	.004	.002	.003	.002	.002	
Min. Outer Layer Via Land Size	.022	.013	.009	.015	.012	.010	
Min. Inner Layer Via Land Size	.020	.012	.008	.015	.012	.010	
6 Min. Via Relief on Power/Ground Planes	.024	.020	.018	.021	.018	.018	
7 Min. Blind/Buried Via Land Size	.018	.016	.010	.014	.012	.010	
Min. Blind/Buried Via Hole Size (Drilled)	.010	.006	.004	.005	.004	.004	
Min. Outer Layer Line Width	.005	.004	.003	.0015	.001	.001	
0 Min. Inner Layer Line Width	.004	.003	.002	.0015	.001	.001	
1 Min. Outer Layer Line to Line Spacing	.005	.004	.003	.0015	.001	.001	
2 Min. Inner Layer Line to Line Spacing	.004	.003	.002	.001	.001	.001	
3 Min. Line to Via Land Spacing	.005	.004	.003	.0015	.0015	.001	
4 Layer to Layer Registration Tolerance	+/-0.004	.0035					

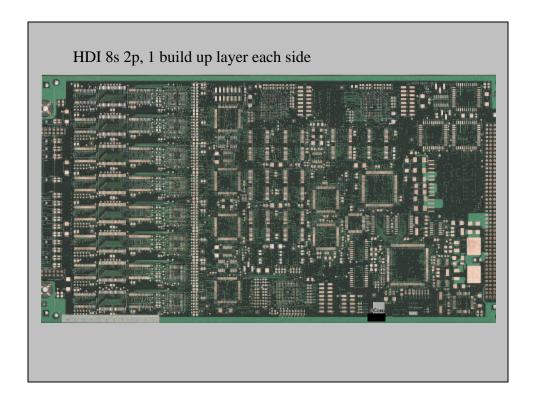
	Technology Roc	udma	p: 1	VIult	ek -	Irvii	re
			_				
				Emerging			
					2000	2001	2002
	Min. Component Pitch	.019	.008	.005	.006	.005	.004
	Max. Overall Board Thickness	.250	.500	1.080	1.080	1.080	1.080
	Min. Dielectric Thickness	.0027	.0022	.002	.0017	.0015	.0012
	PCB Edge to Conductor Solder	.015	.010	.010	.007	.006	.005
	Clearance per Side	.0045	.0035	.0025	.0025	.002	.002
20	Line to SMT Minimum Space	.007	.006	.004	.0045	.0045	.004
21	Min. Base Copper Weights	.0007	.00035	.00035	.00017	.00009	.00009
22	Average Layer Count	14	18	24	20	20	24
23	Dimensions - FAB O.D.	18x24	22x34	22x34	22x34	22x36	22x38
24	Fabrication Radius	.031	.016	.010	.0120	.012	.010
25	Warpage (Design Dependant)	1%	0.7%	0.5%	0.5%	0.5%	0.5%
26	Tolerance-Plated Holes (Design Dependant)	+/003	+/002	+/002	+/002	+/0015	+/001

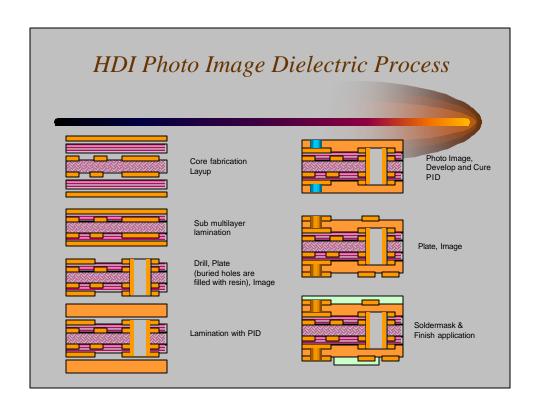
Current Material Properties

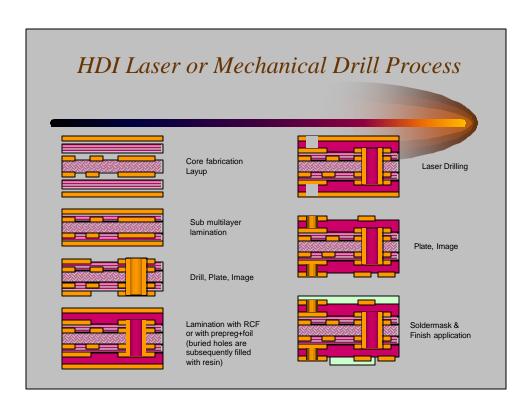
Material Epoxy Dry film, 2.5 mils Thick

Pencil Hardness 8H

Solder Shock 270° C 20 sec


Flammability UL 94 V-0


Dielectric Strength 4000 V/mil


Dielectric Constant3.30 100 MHz3.19 (1 GHz)Dielectric Loss1.13e-2 100 MHz1.10e-2 (1 GHz)

Tg (DSC) 118° C
CTE below Tg 78 ppm
above Tg 176 ppm
Decomposition Temperature 340° C

Copper Adhesion 1100 grams/cm (6.2 lbf/in)

Industry Trends - New Drivers

- Smaller Holes & Larger Quantity
- Thinner Material to Maintain Aspect Ratio
- Improved Dielectric Performance
 - Lower Dk, Lower Loss Tangent
- Matched CTE
- Peel Strengths above 6.2 lbs
- Lower Moisture Absorption Properties
- Compatibility with non-halogenated laminates
- Tg above 180 C
- Compatible with Lead Free Finishes & Underfills

Translated Material Properties

Material Epoxy Based Dielectric

Pencil Hardness 9H

Solder Shock 270° C Multiple Shocks IST Cycling Establish per IPC

Flammability UL 94 V-0

Dielectric Strength Above 4000 V/mil
Frequency Requirement Up to 20 GHz
Tg (DSC) 180° C +
CTE below Tg 78 ppm

above Tg 176 ppm
Decomposition Temperature 340° C

Copper Adhesion > 1100 grams/cm (6.2 lbf/in)

Desired Processing Attributes

- Low Expose Dosage
 - Driven by cationic photoiniator which prefers an abundance of shorter wavelengths than provided by conventional and mercury arc lamps.
- Latent Image
 - Provides significant benefit for checking photovia registration and provides evidence of panel processing.
- · Good Image Definition, Consistency of Photovia Shape
- Favorable Electrical Performance
 - Defined as resistance to electromigration in pressure cooker bias test.
- · High Tg
 - Evidence of materials with lower Tg less robust in wire bond and repair applications.

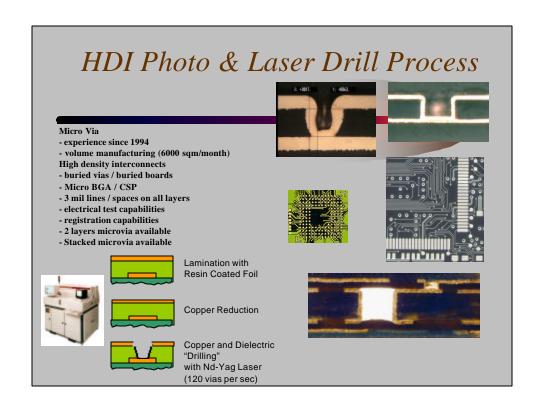
Desired Processing Attributes

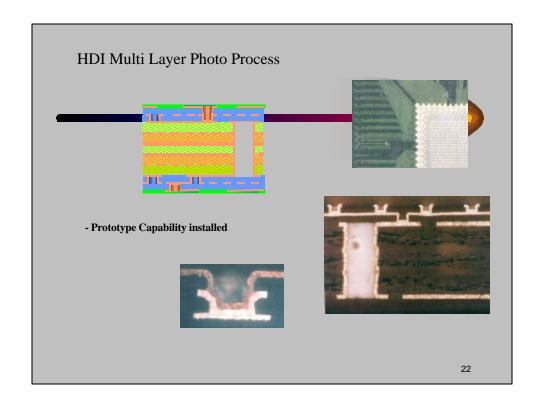
- No Squeeze Out at Lamination
- Strippable after Expose
- No Need for Adhesion Promotion on Underlying Copper
- Thickness Variation
 - Planarity deviations of < 5 microns over fineline circuitry.
- Developing Sensitivity
- Plated Copper to PID Adhesion
 - > 6.2 lbs

Desired Processing Attributes

- Shelf Life
 - Non-Refrigerated
- Surface Prep for Plating
 - Conventional Methods
- Good Hardness & Abrasion Resistance
- Low Cost
- Environmentally Friendly

Proposed Formulation Plans


- Epoxy Based Polymers
- Oligomers
- Monomers
- Curing Agents
- Fillers
- Additives
- Pigments


Testing Criteria

- IPC-600
- JEDEC
- Bellcore
- MilSpec
- IST to meet IPC Recommendations
- Instron Testing
- Pencil Hardness
- Solvent-Alkaline-Permanganate Resistance
- Imageability to 3 mil vias
- General Electrical Properties
- U.L. Approval
- Compatibility with Lead Free Finishes

Contributors

Brad Hammack
Karl Hoebner
Ron Imken
Jim Briguglio

